LA DERIVATION (APPLICATIONS)

Avec Exercices d'applications

PROF: ATMANI NAJIB

http://abcmaths.e-monsite.com

1BAC SM BIOF

TD:LA DERIVATION -APPLICATIONS

Exercice 1: Soit la fonction *f* définie par : :

$$f(x) = \frac{4x-3}{2x-6}$$

Etudier les variations de la fonction f

Exercice 2: Soit la fonction f définie par :

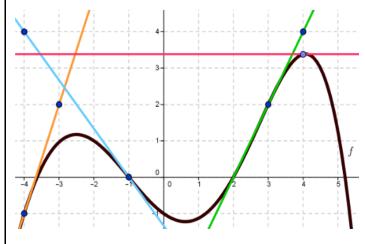
$$f(x) = x\sqrt{x^2 - x}$$

Etudier les variations de la fonction f

Exercice 3: Soit
$$f(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 - 2x$$

Etudier les extremums de la fonction f

Exercice 4: On considère une fonction f dérivable sur \mathbb{R} représentée par sa courbe C en noire cidessous.



On a également tracé les tangentes à la courbe de f aux points d'abscisses -4, -1, 3 et 4.

1)Déterminer graphiquement f(-4), f'(-4);

$$f(-1)$$
; $f'(-1)$; $f(3)$; $f'(4)$

2) Déterminer le signe de f'(3) et f'(5)

Exercice5: soit ABC un Triangle équilatéral et la longueur de son côté est a On construit à l'intérieur un rectangle IJKL (Voir la figure) on pose CI = BJ = x

1) Déterminer l'intervalle qui contient x

2)Déterminer la valeur de *x* pour que la surface du rectangle *IJKL* soit maximal

Exercice 6: montrer que : $\forall n \in \mathbb{N}^*$ et $\forall x \in \mathbb{R}$

$$\cos^{(n)} x = \cos\left(x + n\frac{\pi}{2}\right)$$

Exercice 7: soit l'équation différentielle

$$(E): y'' + 4y = 0$$

1)Résoudre l'équation différentielle (E)

2)Déterminer la solution g qui vérifie :

$$g(0)=1$$
 et $g'(0)=2$

Exercice8: Soient les fonctions suivantes:

1)
$$f(x) = 3x^2 - 2x + 1$$
 2) $g(x) = \frac{1}{3}x^3 - x^2 + x - 1$

3)
$$h(x) = \frac{x^2 + x + 1}{(x-1)^2}$$

Etudier les variations de ces fonctions et déterminer les extremums s'ils existent

Exercice 9: Soit la fonction : $f(x) = 4x^3 - 3x^2 - 6x$

Montrer que f est majorée sur l'intervalle :

$$I_{\scriptscriptstyle 1}=\left]-\infty;1\right]$$
 et minorée sur l'intervalle : $I_{\scriptscriptstyle 2}=\left[-\frac{1}{2};+\infty\right[$ et

bornée sur l'intervalle : $I_3 = \left[-\frac{1}{2};1\right]$

« C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement

Aux calculs et exercices Que l'on devient

Un mathématicien

